Двигатель Электрика  Кузов

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю). История тригонометрии: возникновение и развитие Сообщение на тему история развития тригонометрии

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

1.1. Зарождение и развитие тригонометрии.

1.2. Сферическая тригонометрия.

1.3. Тригонометрия в Европе до Эйлера.

1.4. Вклад Эйлера в развитие тригонометрии.

1.5. Последователи Эйлера в развитии тригонометрии.

1.1. ЗАРОЖДЕНИЕ И РАЗВИТИЕ ТРИГОНОМЕТРИИ.

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат, отвечаю­щий практическим нуждам человека.

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew - измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё 2000 лет назад.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’с точностью до 1/60 4 . Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в IIIвеке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (Iвек н.э.), хотя и не приобрели специального названия. Современный синус, например, изучался как полухорда, на которую опирается центральный угол величиной, или как хорда удвоенной дуги.

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completelysinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”;cos=sin(90-)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в Xвеке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь вXIVвеке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger(касаться), появилось в 1583 г.Tangensпереводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVIIв., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIIIвеке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще,

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

1.2. СФЕРИЧЕСКАЯ ТРИГОНОМЕТРИЯ.

Сферическая тригонометрия - раздел тригонометрии, в котором изучаются зависимости между величинами углов и длинами сторон сферических треугольников. Применяется для решения различных геодезических и астрономических задач.

Основы сферической тригонометрии были заложены греческим математиком и астрономом Гиппархом во II веке до н. э. Важный вклад в её развитие внесли такие античные учёные, как Менелай Александрийский и Клавдий Птолемей. Сферическая тригонометрия древних греков опиралась на применение теоремы Менелая к полному четырёхстороннику на сфере. Древнегреческие математики излагали условие теоремы Менелая не на языке отношений синусов, а на языке отношений хорд. Для выполнения требуемых расчётов применялись таблицы хорд, аналогичные последующим таблицам синусов.

Как самостоятельная дисциплина сферическая тригонометрия сформировалась в работах средневековых математиков стран ислама. Наибольший вклад в её развитие в эту эпоху внесли такие учёные, как Сабит ибн Корра, Ибн Ирак, Кушьяр ибн Лаббан, Абу-л-Вафа, ал-Бируни, Джабир ибн Афлах, ал-Джайяни, Насир ад-Дин ат-Туси. В их работах были введены основные тригонометрические функции, сформулирована и доказана сферическая теорема синусов и ряд других теорем, применявшихся в астрономических и геодезических расчётах, ведено понятие полярного треугольника, позволявшее вычислять стороны сферического треугольника по трём его данным углам.

История сферической тригонометрии в Европе связана с трудами таких учёных, как Региомонтан, Николай Коперник, Франческо Мавролико.

Замена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Индийские учёные пользовались различными тригонометрическими соотношениями. Тригонометрия необходима для астрономических расчётов, которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Позднее учёные составили более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1°.

Южноиндийские математики в 16 веке добивались больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа π. Никаланта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 вв. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 г., а ряд арктангенса был найден Дж. Грегори в 1671 г. и Г. В. Лейбницем в 1673 г.

В 8 в. учёные стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

История тригонометрии как науки

Тригонометрия, как и любая другая научная дисциплина, возникла из потребностей практической деятельности человека. Различные задачи астрономии, мореплавания, землемерия, архитектуры привели к необходимости разработки способа вычисления элементов геометрических фигур по известным значениям других их элементов, найденных путем непосредственных измерений. Само название «тригонометрия» греческого происхождения, обозначающее «измерение треугольников»: (тригонон) - треугольник, (метрейн) - измерение.

Зарождение тригонометрии относится к глубокой древности. Еще задолго до новой эры вавилонские ученые умели предсказывать солнечные и лунные затмения. Это позволяет сделать вывод о том, что им были известны некоторые простейшие сведения из тригонометрии. Постепенно в геометрии и астрономии установились понятия синуса, косинуса и тангенса угла. По существу, ими оперировали еще древние математики, рассматривая отношение отрезков в треугольниках и окружностях.

Накопившийся материал астрономических наблюдений потребовал математической обработки. Одним из основоположников тригонометрии считается древнегреческий астроном Гиппарх, живший во II в. до н.э. Гиппарх является автором первых тригонометрических таблиц. Эти таблицы до нас не дошли, но они вошли (в усовершенствованном виде) в сочинение «Великое построение» (Альмагест) знаменитого александрийского астронома Клавдия Птолемея, жившего во второй половине II в. н.э. В этих таблицах, в течение многих веков служивших средством для решения треугольников, давались значения хорд окружности для различных значений соответствующего центрального угла. Единицей измерения хорд служила часть радиуса.

Эти таблицы, говоря современным языком, являются таблицами значений удвоенного синуса половины соответствующего центрального угла. В них были даны значения хорд для всех углов (через каждые полградуса) от 00 до 1800. Однако надо иметь в виду, что в древней Греции тригонометрия не выделялась в самостоятельную науку, а считалась частью астрономии.

Важный вклад в развитие тригонометрии был внесен индийской математикой в период V - XII вв. н.э. Индийские математики стали вычислять не полную хорду, как это делали греки, а ее половину (то есть «линию синусов»). Линия синусов именовалась ими «архаджива», что буквально означало «половина тетивы лука». Индийцы составилди таблицу синусов, в которой были даны значения полухорд, измеренных частями (минутами) окружности для всех углов от 00 до 900 (через каждые). Эти таблицы были точнее таблиц Птолемея. Об их высокой точности говорит тот факт, что для синуса и косинуса были вычислены значения и, отличающиеся от истинных менее чем на.

Индийским математикам были известны соотношения, которые в современных обозначениях пишутся так:

В XI - XIII вв. в трудах математиков Средней Азии, Закавказья, Ближнего Востока и Индии началось формирование тригонометрии как отдельной науки. И в дальнейшем потребности географии, геодезии, военного дела способствовали развитию тригонометрии как науки. Особенно усиленно тригонометрия развивалась в средние века, в первую очередь на юго-востоке: в Индии (Ариабхата, Брамагупта, Бхаскара), в Узбекистане, Азербайджане и Таджикистане (Насирад-Дин ат-Туси, ал-Каши, ал-Бируни), в Арабии (Ахмад, ибн-Абдаллах, ал-Баттани). Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насирад-Дину Муххамаду ат-Туси (1201 - 1274), написавшему «Трактат о полном четырехугольнике». Работы ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела математики. Однако в их трудах еще не было необходимой символики, и поэтому развитие тригонометрии происходило медленно.

С XV в. и в Европе появляются работы, посвященные вопросам тригонометрии. Немецкий ученый Иоганн Мюллер (1436 - 1476), известный в науке под именем Региомонтан, издал труд «Пять книг о треугольниках всех видов», сыгравший важную роль в развитии тригонометрии. В нем дано систематическое изложение тригонометрии как самостоятельной научной дисциплины. Региомонтан составил таблицы синусов с точностью уже до. В его таблицах радиус круга принимался за вместо числа кратного 60, то есть по сути был совершен переход от шестидесятиричной системы измерения к десятичной. В 1595 г. появился труд Варфоломея Питискуса «Тригонометрия, или Краткий обзорный трактат о решении треугольников».

В XV - XVII в. в Европе было составлено и издано несколько тригонометрических таблиц. Над их составлением работали крупнейшие ученые: Н. Коперник (1473 - 1543), и. Кеплер (1571 - 1630), Ф. Виет (1540 - 1603) и др. В России первые тригонометрические таблицы были изданы в 1703 г. при участии Л.Ф. Магницкого.

Таким образом, тригонометрия возникла на геометрической основе, имела геометрический язык и применялась к решению геометрических задач. Развитие алгебраической символики позволило записывать тригонометрические соотношения в виде формул; применение отрицательных чисел позволило рассматривать направленные углы и дуги и распространить понятие тригонометрических линий (определенных отрезков в круге) для любых углов. В этот период создалась база для изучения тригонометрических функций как функций числового аргумента, основа аналитической теории тригонометрических (круговых) функций. Аналитический аппарат, позволяющий вычислять значения тригонометрических функций с любой степенью точности, был разработан Ньютоном.

Современный вид тригонометрия получила в трудах великого ученого, члена Российской академии наук Л. Эйлера (1707 - 1783). Эйлер стал рассматривать значения тригонометрических функций как числа - величины тригонометрических линий в круге, радиус которого принят за единицу («тригонометрический круг» или «единичная окружность»). Эйлер дал окончательное решение о знаках тригонометрических функций в разных четвертях, вывел все тригонометрические формулы из нескольких основных, установил несколько неизвестных до него формул, ввел единообразные обозначения. Именно в его трудах впервые встречаются записи. Он также открыл связь между тригонометрическими и показательной функциями от комплексного аргумента. На основании работ Л. Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности.

Аналитическое (не зависящее от геометрии) построение теории тригонометрических функций, начатое Эйлером, получило завершение в трудах великого русского ученого Н.И. Лобачевского.

Современная точка зрения на тригонометрические функции как на функции числового аргумента во многом обусловлена развитием физики, механики, техники. Эти функции легли в основу математического аппарата, при помощи которого изучаются различные периодические процессы: колебательные движения, распространение волн, движения механизмов, колебание переменного электрического тока. Как показал Ж. Фурье (1768 - 1830), всякое периодическое движение с любой степенью точности можно представить в виде суммы простейших синусоидальных (гармонических) колебаний. Если в начале развития тригонометрии соотношение

лишь выражало зависимость между площадями квадратов, построенных на сторонах переменного прямоугольного треугольника с гипотенузой равной 1, то в последующем это отношение стало отражать также сложение двух колебательных движений с происходящей при этом интерференцией.

Таким образом, на первоначальных стадиях своего развития тригонометрия служила средством решения вычислительных геометрических задач. Ее содержанием считалось вычисление элементов простейших геометрических фигур, то есть треугольников. Но в современной тригонометрии самостоятельное и столь же важное значение имеет изучение свойств тригонометрических функций. Этот период развития тригонометрии был подготовлен всем ходом развития механики колебательных движений, физики звуковых, световых и электромагнитных волн.

В этот период даны обобщения многим терминам тригонометрии и, в частности, выведены соотношения для, где n - натуральное число, и др. Функции и рассматриваются теперь как суммы степенных рядов:

Одновременно развивается учение о тригонометрических функциях комплексного переменного.

Тригонометрия как учебный предмет

История изучения тригонометрии в школе чрезвычайно поучительна для специалистов в области обучения математике. Это история одного из разделов математической науки, только во второй половине XVIII в. обретшего достаточно стройный и завершенный вид.

Современному учителю уже достаточно сложно найти материалы, раскрывающие идеи и структуру прежних программ обучения математике. В то же время в современной школе, в условиях определенной академической свободы учителя, эти сведения могут быть полезны для обоснования планирования изучения тригонометрии, поскольку они иллюстрируют иные подходы к изучению этого курса, отличающие от предлагаемых сегодня во многих учебниках.

Напомним, что в связи с открытием Н.И. Лобачевским новой геометрии выяснилось, что тригонометрия состоит из двух различных частей:

  • а) первой (ее обычно называют гониометрией) - части математического анализа, где независимо от геометрических соображений аналитически раскрывается учение о трансцендентных тригонометрических функциях с их свойствами;
  • б) второй - собственно тригонометрии, где соединяются математический анализ и геометрия того или иного пространства.

Гониометрия не зависит от аксиомы параллельных, а тригонометрия в собственном смысле зависит от этой аксиомы. Соотношение характеризует в общем случае операции с соответствующими рядами и только в евклидовом пространстве выражает соотношение между площадями квадратов, построенных на сторонах прямоугольного треугольника с гипотенузой равной 1.

Известное соотношение между сторонами и углами треугольника

Тригонометрические неравенства

Пример 1. Решим неравенство

Решение. Обозначив, перепишем неравенство (1) в виде

Множество решений неравенства (2) есть серия интервалов

поэтому все решения неравенства (1) найдем, решив двойное неравенство

откуда получим

то есть множество решений неравенства (1) состоит из серии интервалов

Пример 2. Решим неравенство

Решение. Перепишем неравенство (3) в виде

Обозначим. Так как неравенство имеет множество решений, то решения неравенства (3) найдем, решив двойное неравенство.

Неравенство

Справедливо для любых x, а множество решений неравенства есть серия промежутков

Она и является множеством решений неравенства (3).

Пример 3. Определим все, при каждом их которых неравенство

имеет хотя бы одно решение.

Решение. Разделим неравенство (4) на число, получим неравенство

равносильное неравенству (4).

Так как, то существует такой угол, что и. Перепишем неравенство (5) в виде

Последнее неравенство, а значит, и неравенство (4), имеет хотя бы одно решение при каждом таком, что, то есть при каждом.

Введение . 3

Индия (IV-XV в.в.) 9

Европа (XII-XV в.в.) 15

Новое время (XVI-XVII в.в.) 17

Заключение . 27

Литература. 28

Введение

Слово «Тригонометрия» (от греческих слов «тригонон»- треугольник и «метрио»- измеряю) означает «измерение треугольников» .

Тригонометрия как наука о соотношениях между углами и сторонами треугольника и других геометрических фигур возникла более двух тысячелетий назад. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.

Полагают, что у истоков создания тригонометрии стоят древние астрономы. Немного позднее её стали использовать в геодезии и архитектуре. Со временем область применения тригонометрии постоянно расширялась, и в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности . Особенно полезными тригонометрические функции оказались при изучении колебательных процессов; на них основан также гармонический анализ функций и другие инструменты анализа. Томас Пейн в своей книге «Век Разума» (1794) назвал тригонометрию «душой науки» .

Истории тригонометрии посвящен ряд трудов отечественных и зарубежных ученых.

В XVIII-XIX веках труды по истории математики и астрономии значительное внимание уделяли и истории тригонометрии (Ж. Э. Монтукла, Ж. Б. Ж. Деламбр, Г. Ганкель, П. Таннери и другие). В 1900 году немецкий историк математики Антон фон Браунмюль опубликовал первую монографию в двух томах, специально посвящённую истории тригонометрии. В XX веке крупные работы по этой теме опубликовали И. Г. Цейтен, М. Б. Кантор, О. Нейгебауэр, Б. А. Розенфельд, Г. П. Матвиевская и другие.

Рассмотрим развитие тригонометрии разные исторические периоды: в древнем Египте и Вавилоне (от 2000 до 200 г. до н.э.), в античной Греции (VI- III вв до н.э.), в Индии (IV- XV в.в.), в Средней Азии и на Ближнем Востоке (VIII–XV в.в.), в Европе (XII-XV в.в.), а также в новое время (XVI-XVIII в.в.) и в современный период (XIX-XXI в.в.).

Древний Египет и Вавилон (от 2000 до 200 г. до н.э.)

Зачатки тригонометрии можно найти в математических рукописях древнего Египта, Вавилона и древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания - 360 локтей .

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают Гипсиклу, II век до н. э.). За единицу принят угол, равный части угла, соответствующего полному обороту одной стороны угла около его вершины.

Среди известных вавилонянам теорем была, например, такая: вписанный угол, опирающийся на диаметр круга - прямой . Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э. Вполне возможно, что китайцы открыли его независимо (см. «Математика в девяти книгах»); неясно, знали ли общую формулировку теоремы древние египтяне, но прямоугольный «египетский треугольник» со сторонами 3, 4 и 5 был там хорошо известен и широко использовался.

Античная Греция (VI- III в.в. до н.э.)

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии . Греческие математики ещё не выделяли тригонометрию как отдельную науку - для них она была частью астрономии .

Древнегреческие астрономы употребляли таблицы, в которых давались величины хорд, соответствующих данным углам. Хорды (как и дуги) измерялись градусами, минутами и секундами, при этом один градус составлял обычно шестидесятую часть радиуса.

Несколько теорем тригонометрического характера содержат «Начала» Евклида (IV век до н. э.). В первой книге «Начал» теоремы 18 и 19 устанавливают, что большей стороне треугольника соответствует больший противолежащий угол - и обратно, большему углу соответствует бо́льшая сторона. Теоремы 20 и 22 формулируют «неравенство треугольника»: из трёх отрезков можно составить треугольник тогда и только тогда, когда длина каждого меньше суммы длин двух других. Теорема 32 доказывает, что сумма углов треугольника равна 180°.

Во второй книге «Начал» теорема 12 представляет собой словесный аналог теоремы косинусов

Следующая за ней теорема 13 - вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее .

Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры. Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения.

Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной). Впоследствии эта задача и её обобщения стали основной задачей тригонометрии: заданы несколько (обычно три) известных элементов треугольника, требуется найти остальные связанные с ним величины. Первоначально в число элементов треугольника (известных или неизвестных) включали стороны и углы при вершинах, позже к ним добавились медианы, высоты, биссектрисы, радиус вписанной или описанной окружности, положение центра тяжести и т. д. Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов (в частности, была изобретена астролябия ).

Историки не пришли к консенсусу насчёт степени развития у античных греков геометрии небесной сферы. Некоторые исследователи приводят доводы, что эклиптическая или экваториальная система координат использовалась для записи результатов астрономических наблюдений по меньшей мере уже во времена Гиппарха. Возможно, тогда были известны и некоторые теоремы сферической тригонометрии, которые могли использоваться для составления звёздных каталогов и в геодезии.

Первые известные нам труды по «Сферике» (то есть сферической геометрии, с ясным астрономическим уклоном) написали : (IV век до н. э.) Автолик из Питаны и Евклид («Феномены»); (II век до н. э.) Феодосий и Гипсикл.

Некоторые разобранные в этих сочинениях задачи носят тригонометрический характер, однако из-за слабой разработанности теории авторы ещё применяют обходные пути. Например, задачу «найти время полного восхода (захода) зодиакального созвездия» Гипсикл решает приближённо с помощью многоугольных чисел .

Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). Историки считают, что подход Менелая во многом опирается на труды Феодосия, которые у Менелая существенно расширены и приведены в систему. По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов . Менелай доказал теорему, для которой у Евклида нет плоского аналога: два сферических треугольника конгруэнтны (совместимы), если соответствующие углы равны. Другая его теорема утверждает, что сумма углов сферического треугольника всегда больше 180°.

Вторая книга «Сферики» излагает применение сферической геометрии к астрономии. Третья книга содержит важную для практической астрономии теорему Менелая, известную как «правило шести величин». Две другие открытые Менелаем фундаментальные теоремы впоследствии получили названия «правило четырёх величин» и «правило тангенсов» .

Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.

Сферической геометрии Птолемей посвятил также XIII главу в первой книге «Альмагеста»; в отличие от Менелая, Птолемей не привёл доказательств многих утверждений, но зато уделил много внимания алгоритмам, пригодным для практических вычислений в астрономии.

Индия (IV-XV в.в.)

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен.

В первую очередь индийцы изменили некоторые концепции тригонометрии, приблизив их к современным. Индийцы заимствовали через греков вавилонское градусное измерение дуг, но вместо хорд они измеряли линии синусов и косинусов в прямоугольном треугольнике. Тем самым в Индии было положено начало тригонометрии как общему учению о соотношениях в треугольнике, хотя, в отличие от греческих хорд, индийский подход ограничивался только функциями острого угла .

Индийцы вначале называли синус «ардхаджива», т.е. половина хорды («джива» – хорда, тетива лука), а позже – просто «джива». Это слово было, как полагают, искажено арабами в «джайб», обозначающее по-арабски пазуха, выпуклость. Слово «джайб» было переведено в XII в. на латынь соответствующим словом sinus. Косинус индийцы называли «котиджива», т.е. синус остатка (до четверти окружности).

Синус индийцы определяли несколько иначе, чем в современной математике: под синусом понималась длина отрезка AD, опирающегося на дугу AC окружности радиуса R= 3438 единиц (как у Гиппарха). Таким образом, «индийский синус» угла в 3438 раз больше современного синуса и имел размерность длины . Из этого правила были исключения, например, Брахмагупта по неясным причинам принял радиус равным 3270 единиц.

Как и у греков, тригонометрия индийцев развивалась главным образом в связи с её астрономическими приложениями, в основном для использования в теории движения планет и для изучения небесной сферы. Это свидетельствует о хорошем знании сферической тригонометрии «Альмагеста» и «Аналеммы», однако ни одной их собственной работы, развивающей теорию этого раздела тригонометрии, не обнаружено. Тем не менее, в разработке прикладных алгоритмов решения астрономических задач индийцы достигли больших успехов. Например, в «Панча-сиддхантике» Варахамихиры (VII в.) даётся оригинальное решение астрономической задачи, описанной у Птолемея: найти высоту Солнца над горизонтом, если известны широта местности, склонение Солнца и его часовой угол. Автор для решения применяет аналог теоремы косинусов, он же впервые привёл формулу для синуса половинного угла .

Для астрономических расчётов был составлен ряд тригонометрических таблиц. Первые (четырёхзначные) таблицы синусов приведены в древней «Сурья-сиддханте» и у Ариабхаты («Ариабхатия», V век). Таблицы Ариабхаты содержат 24 значения синусов и синус-верзусов с интервалом 3°45′ (половина шага таблиц у Гиппарха).

Важный вклад в развитие тригонометрии внес Брахмагупта (VII в.), открывший несколько тригонометрических соотношений, в том числе и те, которые в современной записи приняли вид:

Кроме того, индийцы знали формулы для кратных углов, для. В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась. Историки нашли в индийских трудах неявное использование тангенсов, но важность этого понятия была осознана только позже, математиками исламских стран.

В трудах другого выдающегося ученого, Бхаскары II (XII век), приводятся формулы для синуса и косинуса суммы и разности углов:

а также формула для малого приращения синуса:

(при), соответствующая современному выражению для дифференциала синуса. Опираясь на формулу синуса суммы, Бхаскара опубликовал более точные и подробные, чем у Ариабхаты, тригонометрические таблицы с шагом 1°.

В XI веке мусульмане (Махмуд Газневи) захватили и разорили Северную Индию. Культурные центры переместились в Южную Индию, где образуется так называемая «школа Керала» (англ.)русск. (по названию современного штата Керала на юге Индии). В XV-XVI веках математики Кералы в ходе астрономических исследований добились больших успехов в области суммирования бесконечных числовых рядов, в том числе для тригонометрических функций. В анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды, восходящие, вероятно, к основателю этой школы астроному Мадхаве из Сангамаграмы (1-я половина XV века). Мадхава и его последователь Нилаканта приводят также правила разложения арктангенса в бесконечный степенной ряд.

В Европе к подобным результатам подошли лишь в XVII-XVIII веках. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 года, а ряд арктангенса был найден Дж. Грегори в 1671 году и Г. В. Лейбницем в 1673 году.

Средняя Азия и Ближний Восток (VIII–XV в.в.)

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Переводом их на арабский язык занимались такие крупные учёные VIII века, как Ибрахим Ал-Фазари и Якуб ибн Тарик. Далее они и их последователи стали активно комментировать и развивать эти теории. Опорной конструкцией у исламских учёных, как и у индийцев, был синус в треугольнике, или, что то же самое, полухорда в круге.

Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории. Сравнение зиджей периода VIII-XIII веков показывает быструю эволюцию тригонометрических знаний. Предметом особого внимания ученых стран ислама была сферическая тригонометрия, методы которой использовались для решения задач астрономии и геодезии . Среди основных решаемых проблем были следующие.

Точное определение времени суток, вычисление будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны, нахождение географических координат текущего места, вычисление расстояния между городами с известными географическими координатами, определение направления на Мекку из заданного места.

Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс. Изначально эти функции определялись иначе, чем в современной математике. Так, под котангенсом понималась длина тени от вертикального гномона высотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников. Лишь в X веке философ и математик ал-Фараби в своих комментариях к «Альмагесту» ввёл независимые от гномоники определения этих четырёх функций, определив их через синус и косинус в тригонометрическом круге птолемеевского радиуса (60 единиц). Основные соотношения между всеми шестью функциями привёл ал-Баттани в том же столетии. Окончательной унификации добился Абу-л-Вафа во второй половине X века, который впервые использовал для определения тригонометрических функций круг единичного радиуса, как это делается в современной математике.

Происхождение названий тангенса и секанса связано с геометрическим их представлением в виде отрезков прямых. Латинское слово tangens означает «касающийся» (отрезок касательной), secans – секущий (отрезок секущей). Термины «котангенс» и «косеканс» были образованы по аналогии с термином «косинус». Все эти три термина вырабатывались на протяжении веков и вошли во всеобщее употребление в первой половине XVII в.

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника.

Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения. Вероятно, поэтому Региомонтан, впервые давший общую формулировку этой важного соотношения (XV век), назвал его «теоремой Альбатегния» (так тогда в Европе называли ал-Баттани) .

Ибн Юнис (X век) открыл преобразование произведения тригонометрических функций в сумму, например:

Формулы преобразования позволяли заменить трудоёмкое умножение на более простое сложение или вычитание. Впоследствии в Европе эти же формулы использовали для противоположной цели - замены сложения и вычитания на умножение, чтобы затем для вычисления результата применить логарифмические таблицы.

Одной из важнейших задач науки того времени являлось составление тригонометрических таблиц с как можно меньшим шагом. В IX веке ал-Хорезми составил таблицы синусов с шагом 1°, его современник Хаббаш аль-Хасиб (ал-Марвази) добавил к ним первые таблицы тангенсов, котангенсов и косекансов (с тем же шагом). В начале X века ал-Баттани опубликовал таблицы с шагом 30′, в конце того же столетия Ибн Юнис составил таблицы с шагом 1′. При составлении таблиц ключевым было вычисление значения. Искусные методы для вычисления этой величины изобрели Ибн Юнис, Абу-л-Вафа, ал-Бируни. Наибольшего успеха добился в XV веке ал-Каши; в одной из своих работ он подсчитал, что (все знаки верны). В составленных при его участии «Астрономических таблицах» Самаркандской обсерватории Улугбека таблицы синусов вычислены с шестью шестидесятеричными знаками, с шагом 1′. Султан Улугбек лично участвовал в этой работе: он написал специальный трактат о вычислении синуса угла в 1°.

Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного ал-Бируни (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд ал-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15′) Ал-Бируни дал таблицы тангенсов (с шагом 1°). Идеологически труды Бируни близки к птолемеевским - на языке хорд он формулирует теоремы о синусе удвоенного и половинного угла, синусе суммы и разности углов . Среди приложений книга Ал-Бируни показывает построение правильного вписанного девятиугольника и приближённое вычисление длины его стороны; этот алгоритм он использует для нахождения. В другом труде, «Геодезия», Бируни сообщил результаты собственных измерений длины земного меридиана, из которых следует оценка радиуса Земли, близкая к истинной (в пересчёте к метрической системе, Бируни получил 6340 км).

Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси - например, построение сторон сферического треугольника по заданным трём углам. Приведена теорема тангенсов для сферических треугольников, описано важное понятие полярного треугольника (впервые использованное в XI веке Ибн Ираком и ал-Джайяни). Сочинение ат-Туси стало широко известно в Европе и существенно повлияло на развитие тригонометрии.

Таким образом, к концу XIII века были открыты базовые теоремы, составляющие содержание тригонометрии: выражение любой тригонометрической функции через любую другую; формулы для синусов и косинусов кратных и половинных углов, а также для суммы и разности углов; теоремы синусов и косинусов; решение плоских и сферических треугольников.

Из-за отсутствия алгебраической символики все перечисленные теоремы выражались в громоздкой словесной форме, но по существу были полностью эквивалентны современному их пониманию.

Европа (XII-XV в.в.)

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу ал-Хорезми, два перевода которого были выполнены в XII веке. Первоначально сведения о тригонометрии (правила её использования, таблицы некоторых тригонометрических функций) приводились в сочинениях по астрономии, однако в сочинении Фибоначчи «Практика геометрии», написанном около 1220 года, тригонометрия излагается как часть геометрии. Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Книга содержит доказательство ряда тригонометрических тождеств и оригинальный метод вычисления синусов. Примерно в те же годы был написан трактат еврейского математика Леви бен Гершома (Герсонида) «О синусах, хордах и дугах», переведённый на латинский язык в 1342 году. Книга содержит доказательство теоремы синусов и пятизначные таблицы синусов. Тригонометрия затрагивается в «Теоретической геометрии» английского математика Томаса Брадвардина (написана в первой половине XIV в., опубликована в 1495 году). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Крупным достижением стала монография Региомонтана «Пять книг о треугольниках всех видов» (опубл. 1462-1464), в которой были сведены все известные к этому моменту знания по плоской и сферической тригонометрии и приложены семизначные таблицы синусов (с шагом 1′) и тангенсов (с шагом 1°). Немаловажно и то, что в таблицах Региомонтана, в нарушение астрономической традиции, впервые использовалась десятичная система (а не архаичная шестидесятеричная). Радиус тригонометрического круга Региомонтан принял равным, чтобы табличные значения были представлены целыми числами (десятичные дроби вошли в обиход несколько позднее, причём мощным стимулом к их применению стали именно тригонометрические вычисления).

По сравнению с трактатом ат-Туси сочинение Региомонтана существенно полнее, оно содержит ряд новых задач, решённых оригинальными методами. Например, показывается, как построить треугольник, если известны одна его сторона, длина опущенной на неё высоты и противолежащий угол .

Новое время (XVI-XVII в.в.)

Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник, Иоганн Кеплер, Франсуа Виет. Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10". Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера - эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера».

Термин «тригонометрия» как название математической дисциплины ввёл в употребление немецкий математик Б. Питискус, опубликовавший в 1595 году книгу «Тригонометрия, или краткий и ясный трактат о решении треугольников» (лат. Trigonometria: sive de solutione triangulorum tractatus brevis et perspicuus). К концу XVII века появились современные названия тригонометрических функций. Термин «синус» впервые употребил около 1145 года английский математик и арабист Роберт Честерский. Региомонтан в своей книге назвал косинус «синусом дополнения» (лат. sinus complementi), поскольку; его последователи в XVII веке сократили это обозначение до co-sinus (Эдмунд Гунтер), а позднее - до cos (Уильям Отред). Названия тангенса и секанса предложил в 1583 году датский математик Томас Финке, а упомянутый выше Эдмунд Гунтер ввёл названия котангенса и косеканса. Термин «тригонометрические функции» впервые употребил в своей «Аналитической тригонометрии» (1770) Георг Симон Клюгель .

Томас Финке предложил оригинальное решение геодезической задачи: найти углы треугольника, если известна их сумма и отношение противолежащих сторон. Для решения Финке использовал формулу Региомонтана:

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда. «Несомненно, что самый интерес его к алгебре первоначально был вызван возможностью приложений к тригонометрии и астрономии». Другой важной заслугой Виета стало применение в тригонометрии разработанной им общей алгебраической символики; если ранее решение задачи понималось как геометрическое построение, то начиная с работ Виета приоритет начинает переходить к алгебраическим вычислениям. Появление символики позволило записать в компактном и общем виде тригонометрические тождества - например, формулы для кратных углов:

Надо оговориться, что сам Виет ещё дал эти формулы частично в словесном описании, но при этом ясно указал на связь коэффициентов формул с биномиальными коэффициентами и привёл таблицу их значений для небольших значений.

Из других достижений Виета: в работе «Дополнение к геометрии» Виет указал тригонометрический способ решения кубического уравнения для самого трудного в тот период - неприводимого - случая (стандартная формула требует умения работать с корнями из комплексных чисел). Виет дал первое в истории бесконечное произведение:

Кроме артиллерии и навигации, тригонометрия быстро развивалась и в таких классических областях её применения, как геодезия. Широкое применение тангенсов объяснялось, в частности, простотой измерения с их помощью высоты горы или здания (см. рисунок):

В 1615 году Снеллиус нашёл решение «задачи Снеллиуса-Потенота»: найти точку, из которой стороны данного (плоского) треугольника видны под заданными углами. Он открыл закон преломления света: для заданных исходной и преломляющей среды отношение синусов угла падения и угла преломления постоянно. Тем самым Снеллиус открыл дорогу новым применениям тригонометрических функций в оптике, а изобретение в эти же годы первых телескопов придало этому открытию особую важность.

Первый график синусоиды появился в книге Альбрехта Дюрера «Руководство к измерению циркулем и линейкой» (нем. Underweysung der Messung mit dem Zirkel und Richtscheyt, 1525 год). В 1630-х годах Жиль Роберваль, в ходе своих исследований циклоиды, независимо вычертил синусоиду, он же опубликовал формулу тангенса двойного угла. Джон Валлис в своей «Механике» (1670), опередив своё время, правильно указал знаки синуса во всех квадрантах и указал, что у синусоиды бесконечно много «оборотов». График тангенса для первого квадранта впервые начертил Джеймс Грегори (1668).

Во второй половине XVII века началось стремительное развитие общей теории квадратур (то есть вычисления площади), завершившееся появлением в конце века математического анализа. Для тригонометрических функций важные результаты в начале этого периода получил Блез Паскаль (опубликованы в его книге «Письма А. Деттонвилля о некоторых его геометрических открытиях», 1659 год). В современной терминологии, Паскаль вычислил интегралы от натуральных степеней синуса и косинуса и некоторые связанные с ними, а также отметил, что. Работы в области тригонометрии проводили такие крупные математики XVII века, как Отред, Гюйгенс, Озанам, Валлис. Заметным процессом во второй половине XVII века стала постепенная алгебраизация тригонометрии, совершенствование и упрощение её символики (хотя до Эйлера символика была всё же гораздо более громоздка, чем современная).

После открытия математического анализа сначала Джеймс Грегори, а затем Исаак Ньютон получили разложение тригонометрических функций (а также обратных к ним) в бесконечные ряды. Ньютон посвятил проблемам геометрии и тригонометрии 10 задач в своей книге «Универсальная арифметика». Например, в задаче X требуется «решить треугольник», если известны одна его сторона, противолежащий угол и сумма двух других сторон. Предложенный Ньютоном метод решения представляет собой одну из формул Мольвейде .

Лейбниц строго доказал, что не может быть, вообще говоря, алгебраически выражен через, то есть, в современной терминологии, тригонометрические функции трансцендентны.

Важными открытиями в начале XVIII века стали:

Открытие и широкое распространение радианной меры углов (Роджер Котс, 1714). Сам термин «радиан» появился позднее, его в 1873 году предложил английский инженер Джеймс Томсон.

Тригонометрическое представление комплексного числа и формула Муавра.

Начало использования (Ньютон и Грегори) полярной системы координат, связанной с декартовой тригонометрическими соотношениями; в общее употребление эти координаты ввёл Эйлер (1748).

В 1706 году швейцарский математик Якоб Герман опубликовал формулы для тангенса суммы и тангенса кратных углов, а Иоганн Ламберт в 1765 году нашёл чрезвычайно полезные формулы, выражающие разные тригонометрические функции через тангенс половинного угла. Исследуя гиперболические функции (1761), Ламберт показал, что их свойства аналогичны свойствам тригонометрических; причину этого ещё в 1707 году обнаружил Муавр: при замене вещественного аргумента на мнимый круг переходит в гиперболу, а тригонометрические функции - в соответствующие гиперболические.

Немецкий математик Фридрих Вильгельм фон Оппель в книге «Анализ треугольников» (1746) опубликовал в современной записи обе формулы Мольвейде.

В книге «Полигонометрия» (1789) Симон Люилье обобщил тригонометрические соотношения для треугольников, дав их аналоги для произвольных многоугольников, включая пространственные. В работах на эту тему Люилье привёл основную теорему полигонометрии: площадь каждой грани многогранника равна сумме произведений площадей остальных граней на косинусы углов, образуемых ими с первой гранью. Он рассмотрел способы «решения многоугольников» с сторонами при различных постановках задачи: заданы сторона и угла, или все углы и стороны, или все стороны и угла.

В 1798 году Лежандр доказал, что если размеры сферического треугольника малы по сравнению с радиусом сферы, то при решении тригонометрических задач можно применять формулы плоской тригонометрии, вычтя при этом из каждого угла треть сферического избытка .

Манера обозначать обратные тригонометрические функции с помощью приставки arc (от лат. arcus - дуга) появилась у австрийского математика Карла Шерфера (Karl Scherffer, 1716-1783) и закрепилась благодаря Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: , но они не прижились.

Современный вид тригонометрии придал Леонард Эйлер. В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции. Если его предшественники понимали синус и прочие понятия геометрически, то есть как линии в круге или треугольнике, то после работ Эйлера и т. д. стали рассматриваться как безразмерные аналитические функции действительного и комплексного переменного. Для комплексного случая он установил связь тригонометрических функций с показательной функцией (формула Эйлера). Подход Эйлера с этих пор стал общепризнанным и вошёл в учебники.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.

Эйлер впервые представил разложение тригонометрических функций в бесконечные произведения (1734), откуда вывел ряды для их логарифмов.

В других трудах, в первую очередь «Основания сферической тригонометрии, выведенные из метода максимумов и минимумов» (1753) и «Всеобщая сферическая тригонометрия, кратко и ясно выведенная из первых оснований» (1779), Эйлер впервые дал полное систематическое изложение сферической тригонометрии на аналитическом основании, причём многие крупные результаты принадлежат самому Эйлеру.

В середине XVIII века разгорелся важнейший по своим последствиям «спор о струне». Эйлер в полемике с Даламбером предложил более общее определение функции, чем принималось ранее; в частности, функция может быть задана тригонометрическим рядом. В своих трудах Эйлер использовал несколько представлений алгебраических функций в виде ряда из кратных аргументов тригонометрических функций, например:

Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.

Тригонометрия в России

В России первые сведения о тригонометрии были опубликованы в сборнике «Таблицы логарифмов, синусов и тангенсов к изучению мудролюбивых тщателей», опубликованном при участии Л. Ф. Магницкого в 1703 году. В 1714 году появилось содержательное руководство «Геометрия практика», первый русский учебник по тригонометрии, ориентированный на прикладные задачи артиллерии, навигации и геодезии. Завершением периода освоения тригонометрических знаний в России можно считать фундаментальный учебник академика М. Е. Головина (ученика Эйлера) «Плоская и сферическая тригонометрия с алгебраическими доказательствами» (1789).

В конце XVIII века в Петербурге возникла авторитетная тригонометрическая школа (А. И. Лексель, Н. И. Фусс, Ф. И. Шуберт), которая внесла большой вклад в плоскую и сферическую тригонометрию.

Современный период (XIX-XXI в.в.)

В начале XIX века Н. И. Лобачевский добавил к плоской и сферической тригонометрии третий раздел - гиперболическую (для геометрии Лобачевского, первую работу в этой области опубликовал Ф. А. Тауринус в 1826 году). Лобачевский показал, что формулы сферической тригонометрии переходят в формулы гиперболической тригонометрии при замене длин сторон треугольника a, b, c на мнимые величины: ai, bi, ci - или, что эквивалентно, при замене тригонометрических функций на соответствующие гиперболические.

В XIX-XX веках бурное развитие получили теория тригонометрических рядов и связанные с ней области математики: гармонический анализ, теория случайных процессов, кодирование аудио и видеоинформации и другие. Ещё Даниил Бернулли высказал убеждение, что любую (непрерывную) функцию на заданном промежутке можно представить тригонометрическим рядом. Дискуссии продолжались до 1807 года, когда Фурье опубликовал теорию представления произвольных кусочно-аналитических функций тригонометрическими рядами (окончательный вариант содержится в его «Аналитической теории тепла», 1822). Для разложения функции в ряд:

Фурье привёл интегральные формулы расчёта коэффициентов:

Изложение Фурье не было строгим в современном понимании, но уже содержало исследование сходимости большинства полученных им рядов. Для функций, заданных на всей числовой прямой и не являющихся периодическими, Фурье предложил разложение в интеграл Фурье.

Универсальность и эффективность методов анализа Фурье произвели большое впечатление на научный мир. Если ранее тригонометрические ряды использовались в математической физике преимущественно для изучения периодических процессов (колебания струны, небесная механика, движение маятника и т. п.), то в труде Фурье исследовались процессы совсем иного рода (теплопередача), и тригонометрические ряды помогли получить ценные практические результаты. С этого момента тригонометрические ряды и интегралы стали мощным инструментом анализа разнообразных функций. Результаты Фурье продолжили и углубили Пуассон и Коши, вопрос сходимости рядов детально исследовали Дирихле и другие математики. Риман в своей диссертации исследовал произвольные тригонометрические ряды, не обязательно связанные с разложением какой-либо функции (1853), сформулировал для них «принцип локализации». Вопрос о представимости произвольной измеримой и конечной почти всюду функции тригонометрическим рядом (который не обязательно совпадает с её рядом Фурье) был решён в 1941 году теоремой Меньшова.

Исследуя множества особых точек для тригонометрических рядов, Георг Кантор разработал фундаментальную для всей математики теорию множеств. Огромное влияние теория тригонометрических рядов оказала на развитие комплексного анализа, математической физики, электроники и многих других разделов науки. Теория функций вещественного переменного, теория меры и интеграл Лебега появились и далее развивались в тесной связи с теорией тригонометрических рядов. Важные практические применения имеет приближение функций конечными тригонометрическими полиномами (используемое также для интерполирования).

Заключение

В настоящем реферате рассмотрено развитие тригонометрии в различные исторические периоды: в древнем Египте и Вавилоне (от 2000 до 200 г. до н.э.), в античной Греции (VI- III в.в. до н.э.), в Индии (IV- XV в.в.), в Средней Азии и на Ближнем Востоке (VIII–XV в.в.), в Европе (XII-XV в.в.), а также развитие тригонометрии в новое время (XVI-XVIII в.в.) и в современный период (XIX-XXI в.в.).

Образование и развитие тригонометрии как науки во многом обязано познанию человечеством окружающего мира, а также религиозными потребностями, развитием математики и другими факторами.

Современное развитие тригонометрии обусловлено потребностями для развития техники и средств обработки информации.

Литература

1 Выгодский М. Я. Справочник по элементарной математике. - М.: Наука, 1978. - С. 266-268.

2 Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник, изд. 3-е. - СПб.: ЛКИ, 2008. - 248 с. - ISBN 978-5-382-00839-4.

3 Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. - М.: ГИФМЛ, 1959.

4 Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. - М.: Просвещение, 1982. - С. 76-95. - 240 с.

5 Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. - Изд. 2-е. - М.: Либроком, 2012. - 160 с.

6 Хрестоматия по истории математики. Арифметика и алгебра. Теория чисел. Геометрия / Под ред. А. П. Юшкевича. - М.: Просвещение, 1976. - 318 с.

7 Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. - М.: Просвещение, 1978. - 95 с.

8 Цейтен Г. Г. История математики в древности и в средние века. - М.-Л.: ГТТИ, 1932. - 230 с.

9 Вилейтнер Г. История математики от Декарта до середины XIX столетия. - М.: ГИФМЛ, 1960. - 468 с.

10 Цейтен Г. Г. История математики в древности и в средние века. - М.-Л.: ГТТИ, 1932. - 230 с.

11 Рыбников К. А. История математики в двух томах. - М.: Изд. МГУ, 1960. - Т. I.

12 История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.

13 История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. - М.: Наука, 1970. - Т. I. - 351 с.

14 Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. - М.: Наука, 1970. - Т. II. - 300 с.

15 Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. - М.: Наука, 1972. - Т. III. - 495 с.

16 Степанов Н. Н. Сферическая тригонометрия. - Изд. 2-е. - М.-Л.: ГИТТЛ, 1948. - С. 139-143. - 154 с.

17 Даубен, Джозеф У. Георг Кантор и рождение теории трансфинитных множеств // Scientific American, издание на русском языке. - 1983. - Вып. 8 (август). - С. 76–86.

18 Тригонометрический ряд // Математическая энциклопедия (в 5 томах). - М.: Советская Энциклопедия, 1982. - Т. 5.

тригонометрия

Важнейший период истории тригонометрии связан с деятельностью учёных Ближнего и Среднего Востока. Начало его можно датировать VIII в., когда в столице арабского халифата Багдаде началась активная работа по изучению индийского и греческого научного наследия. Среди успешно развивавшихся научных дисциплин были те направления астрономии и математики, в рамках которых формировалась плоская и сферическая тригонометрия.

Астрономия - одна из древнейших наук - на протяжении всего средневековья развивалась в неразрывной связи с другими дисциплинами. Необходимое в разных областях практической деятельности людей, например, при точном определении времени, составлении календаря, ориентировки на местности, измерении расстояний и т.д., она, в свою очередь, нуждалась в совершенном математическом аппарате. Именно потребности астрономии явились в тот период важнейшим стимулом быстрого прогресса математики и, в частности, разработки новых вычислительных приёмов.

Большое внимание в это время привлекала гномоника - теория солнечных часов, широко применявшихся в практике. При решении астрономических задач использовались древние графические приёмы, основанные на ортогональном проектировании сферы на плоскость. Всё большее значение приобретало учение о линиях в тригонометрическом круге.

Обобщив результаты, полученные предшественниками, учёные ближнего и Среднего востока развили тригонометрические методы и уже в XII в. фактически превратили тригонометрию в самостоятельную науку.

Прежде чем перейти к обзору тригонометрии на средневековом ближнем и Среднем востоке, следует назвать некоторых учёных, чьи труды сыграли особенно важную роль в ее истории.

Вначале необходимо упомянуть выдающихся переводчиков античной научной литературы с греческого и сирийского языка. Это работавшие в Багдаде в конце VIII - начале IX вв. Хаджжадж ибн Йусуф ибн Матар (жил между 786 и 833 гг.), математик, физик и медик Исхак ибн Хунайн 9830 - 910). Большой вклад в развитие тригонометрии внесли уроженцы Средней Азии Муххамад ибн Мусса ал-Хорезми (ок. 780 - ок.880 гг.) и Ахмад ибн Абдаллах ал-Марвази. Известный под именем Хабаш ал-Хасиб (ок. 770 - ок. 870 гг.). Первый из них прославился прежде всего сочинениями по математике: его имя связывается с созданием алгебры и с распространением арифметики, основанной на десятичной позиционной системе счисления с применением нуля. Важное значение в истории науки имел также его географический труд. Как и Хабаш ал-Хасиб, ал-Хорезми относился к виднейшим астрономам своего времени. Их сочинения пользовались огромной популярностью. Особую роль в истории тригонометрии сыграли составленные ими «зиджи».

Особое место в истории тригонометрии занимает выдающийся астроном средневекового Востока Мухаммад ибн Джабир ал-Баттани (ок. 850 - 929). Следует упомянуть также крупнейшего философа, основоположника восточного аристотелизма Абу Насра Мухаммада ал - Фараби (ок. 870 - 950 гг.).

К концу XI в. общими усилиями учёных Ближнего и Среднего Востока были заложены основы тригонометрии как самостоятельной науки. Оформлялась она и в трудах западноарабских математиков, среди которых должны быть названы Мухаммад ибн Йусуф ибн Ахмад ибн My"аз ал-Джаййани (989 - ок. 1080 гг.) и Абу Мухаммад джабир ибн Афлах (XII в.).

В XIII в. важный шаг в развитии тригонометрии сделали представители марагинской научной школы - прежде всего ее руководитель, учёный Насир ад-Дин ат-Туси (1201 - 1274 гг.) и его ученики Мухьи ад-Дин ал-Магриби и кутб ад-Дин аш-Ширази.

Средневековые учёные стран ислама продолжали в своих сочинениях традиции предшественников, наследниками которых в области точных наук они явились. Поэтому в астрономо- математической литературе этого периода, имеющей отношение к тригонометрии, четко выделяются, во-первых. Комментарии к греческим трудам (прежде всего к «Альмагесту» Птолемея и к сочинениям о сферике) и их обработки, и, во-вторых, сочинения, в которых развиваются индийские методы. Третью группу составляют труды, в которых эти методы сочетаются с греческими.

Индийское влияние сказалось в арабской тригонометрической терминологии. Линия синуса была названа джайб. Это арабизированный индийский термин джива, обозначающий хорду или тетиву лука. Косинус обозначался термином «синус дополнения». Обращённый синус называли вслед за индийцами «стрелой».

Вплоть до X - XI вв. зиджи и близкие им по характеру астрономические сочинения включались сводки основных сведений по тригонометрии и тригонометрические таблицы. Среди авторов трудов, внёсших значительный вклад в развитие науки и увеличение этого материала, были такие учёные как Абу Насар Мансур ибн Ирак и его великий ученик Абу Райхан Беруни. А работа Насир ад-Дина ат-Туси оставила важный след в истории тригонометрии.

Плоская тригонометрия излагалась, как правило, в специальных разделах астрономических сочинениях, прежде всего зиджей. Здесь приводились определения тригонометрических функций и устанавливались соотношения между ними, предлагались правила решения треугольников. Наибольшее внимание, естественно, уделялось вопросу, важному для практики, - составлению тригонометрических таблиц.

Понятие синуса и обращённого синуса встречаются - по-видимому, впервые арабоязычной литературе - в зидже ал-Хорезми. Он приводит таблицу синусов (до секунд включительно) и правило пользования ею, разъясняет, как с помощью этой таблицы найти синус и обращённый синус по данной дуге и как по данному синусу найти дугу. В качестве угловой единицы у ал-Харезми служит «знак зодиака», равный окружности круга, т.е. 30°. Значение синусов даются в частях радиуса, который принят равный 60, и выражаются в шестидесятеричных дробях.

Рис.6 рис.7

Правило определения обращённого синуса, словесно сформулированное ал-Харезми, с помощью современной математической символике можно записать так: если обозначить линию обращённого синуса дуги б через sinvers б, то

sinvers а = 60° - sin (90° - а), при б < 90°,

sinvers а = 60° + sin (90° - а), при б > 90°.

Если радиус круга, как принято сейчас, взять равным 1, то это правило примет вид sinvers б = 1 - cos б, где соответственно cos б > 0 и cos < 0.

Тангенс, котангенс, а также секанс и косеканс, введённые и табулированные тогда же, рассматривались вначале, как линии, фигурировавшие в науке о солнечных часах - гномонике.

Правило, по которому находился котангенс угла б, в современных обозначениях имеет вид

множитель 12 появляется здесь в связи с тем, что гномон подразделяется на 12 частей. Аналогично правило приводится дня тангенса, которая выражается в долях единицы

Однако уже ал-Фараби при изложении труда Птолемея не только отказался от понятия хорды, но и рассматривал линии тангенса и котангенса как линии, связанные с кругом. Тем самым он нарушил традиционную связь этих тригонометрических функций с гномоникой.

Приведём для иллюстрации цитату из его «Книги приложений к Альмагесту», содержащую определение тангенса и котангенса в связи с задачей нахождения высоты солнца: «Пусть ABCD (рис.7) - круг высоты, его центр Е, a DI - пересечение плоскостей круга, высоты и круга горизонта; DE - гномон, стоящий под прямым углом к плоскости горизонта в точке D, СК - пересечение плоскости круга высоты и плоскости, стоящий под прямым углом к горизонту в точке С, а СЕ - гномон, стоящий на этой плоскости. Зададимся дугой высоты AG. Проведём GEF, т.е.луч, соединяющий вершину гномона и конец тени; DF - тень гномона DE, называемая плоской тенью или второй тенью высоты AG, а СН - тень гномона СЕ, называемая обращённой тенью или первой тенью высоты AG» .

При этом ал-Фараби особо отмечает, что тангенс «изменяется и увеличивается с увеличением высоты солнца», а котангенс «уменьшается с увеличением этой высоты».

Но если в приведённом рассуждении связь с гномоникой ещё сильна, то далее, при нахождении величины линий тангенса и котангенса, ал-Фараби рассматривает их только как линии в круге - наряду с линией синуса и косинуса.

Где r-радиус круга.

Существенно также, что ал-Фараби выражает тангенс и котангенс (также, как синус и косинус) в далях радиуса, подразделённого на 60 частей, а не в седьмых и двенадцатых долях гномона, как было принято раньше.

Тригонометрическая функция косинус в трудах восточных математиков рассматривалась только как синус дополнения угла до 90.

Таким образом, к концу ІХ века учёные средневекового Востока знали все шесть тригонометрических функций. Соотношение между ними, которые были выведены из геометрических соображений, формулировались словесно. С помощью математической символики эти соотношения приведенные, например, ал-Баттани, будут иметь вид:

Чрезвычайно важный шаг для развития тригонометрии сделал Абу- л-Вафа ал-Бузджанни, положив г = 1 вместо б= 60. Он стал рассматривать тригонометрические функции в единичном круге и тем самым существенно облегчил вычисления. Ему же принадлежит более изящное, чем у Птолемея, доказательство соотношения, которое сейчас мы выражаем формулой

А у Ибн Йуниса встречается другое, сыгравшее существенную роль в истории тригонометрии:

Далее следуют уже известные из «Альмагеста» теоремы о хорде дополнительной дуги, хорде удвоенной дуги, хорде суммы и разности двух данных дуг, равносильные теоремам о синусе удвоенного и половинного углов, о синусе суммы и разности двух углов. Их важность отмечает Беруни.

Значительно облегчила решение треугольников доказанная в X в. теорема синусов, устанавливающая пропорциональность сторон и противолежащих углов.

Теорема косинусов а 2 = b 2 + с 2 - 2 bc cos А, где а, b, с - стороны треугольника, А - его угол, в общем виде сформулирована не была.